Glycerin refining, It’s now or never

Elvis Presley: 39 años sin el Rey del Rock

«It’s now or never, come hold me tight

Kiss me my darling, be mine tonight ”

Elvis Presley -1960-

It’s evident that the COVID19 crisis is changing the world, after this global pandemic, all businesses are rethinking and adapting to this different world that is appearing after the greatest global health crisis in a centurty.

Although in most cases the effects on the economy will be devastating, there are new opportunities arising from the health crisis.

One of them is the growth in the demand for sanitary gels. In the manufacture of these gels, among other raw materials, refined glycerine USP or EP is used.

The market behaviour of glycerine has suffered various ups and downs over the past two decades. Traditionally glycerine had been obtained through the hydrolysis of oils, and later its refining to pharmaceutical grade.

In the 2000s the biodiesel industry appeared, and with it its by-product of approximately 10% of glycerine production. This caused a supply shock in the market that translated into an unprecedented drop in price, to derisory price levels. This price level made new applications appear where in the past glycerine was not economically feasible to use.

A technological change generates a massive appearance of product, this massive appearance of product drags prices down and new opportunities appear for this product, which translates into a new level of volume and price equilibrium.

Over the past 10 years following this supply shock, we have seen the market for both raw and refined glycerine in decline, typical of a mature market.

Even in the lowest market situations, glycerine refining from crude to USP or EP has always been profitable for biodiesel manufacturers, with a fast return on investment of less than a year, as well as being a key competitiveness tool.

Now we find that refined glycerine has even tripled the price in 4 months, seeing glycerines of the highest quality on the market at prices above 1500 EUR EXW.

We are now in a shock of demand, but the new demand for hydrogel uses has come to stay for a long time, which will lead to a new price balance at a much higher level than in recent years.

The price differential of refined glycerine with respect to crude oil fully justifies the investment for the biodiesel manufacturer for three main reasons:

• Portfolio expansion: Refined glycerine is presented as a product with higher added value.

• Margin: Rabid and fast investment return.

• Competitiveness: Greater competitiveness for the future. Today’s competitive advantage will be tomorrow’s standard.

Manufacturers based on UCO and other waste are the ones that have the most to gain in this type of facilities, or the ones that have the most to lose in the event that they do not carry out this type of investment. Glycerine based on these residues is authorized for hydroalcoholic gels in Austria and Germany.

It is very important to choose the right partner to carry out this type of investment, who has proven experience in this type of facility.

CMBItaly can offer you complete glycerine refining facilities, and also if you work on the basis of residual oils, a purification of the product that allows you to meet the highest USP or EP standards, especially in colour stability.

At CMBItaly we have been working in the oleochemical sector since 1950, and we know perfectly how to treat your product to give greater value to you and your company.

For glycerin, as the great Elvis said, it is now or never …

Desafíos en el refino de materias primas para HVO. El problema del Cloro.

El aceite vegetal hidrotratado o HVO, es un combustible parafínico derivado de lípidos orgánicos. Se trata de una hidrogenación, con la utilización de catalizadores, dónde se satura por completo las cadenas de los ácidos grasos, dando lugar a combustible parafínico y bio-propano.

Existen dos procesos de producción para el mismo:

  • Coproceso. Aprovechando las unidades de desulfuración de las refinerías de petróleo, al mismo tiempo que se está tratando el gasoil para eliminar el azufre, se añade una cantidad de aceite refinado, el cual se transforma en combustible parafínico HVO, y en bio-propano. El HVO queda mezclado con el gasóleo y el propano se separa.
  • Proceso directo. Se produce HVO puro y bio-propano al igual que el caso anterior. El HVO puro puede entonces pasar por el proceso de isomerización y crackeo dónde se mejoran sus condiciones, siendo esta tecnología la base para el futuro desarrollo de combustibles sostenibles de aviación (SAF)

Tradicionalmente tanto un proceso como otro han trabajado con aceites vegetales refinados RBD. Con un refinado RBD es suficiente para obtener un producto de calidad preservando las instalaciones y los catalizadores heterogéneos.

Los biocombustibles en base a aceites vegetales se encuentran en extinción, siendo la incorporación de materias primas avanzadas la realidad y la tendencia creciente a día de hoy.

Las materias primas avanzadas son en general materias residuales. Las materias residuales tienen unas necesidades de refino mucho mayores que un aceite vegetal de primer uso. Las materias más abundantes a día de hoy de este tipo son aceites recuperados de freiduría (UCO), grasas animales cat1 & cat2, tall oil, productos de alta acidez, etc.

Estas materias primas no pueden de ninguna manera utilizarse directamente en la fabricación de HVO. Ya que serían un grave riesgo para la instalación, además de envenenar el catalizador heterogéneo utilizado, acortando la vida útil de éste caro suministro.

Los elementos y sus repercusiones se detallan seguidamente:

  • Fósforo: Debe entrar a proceso en un valor inferior a 5 ppm. Valores más altos afectan a la duración del catalizador, y la calidad del combustible final, la presencia de fosfolípidos puede generar emulsiones que dificultan los procesos de separación.
  • Metales: El valor total de metales debe de ser muy bajo, inferior a 20 ppm. Los metales provocan incrustaciones en los equipos, además de ser el principal veneno del catalizador.
  • Acidez oleica: La acidez oleica no es un problema en el proceso de producción, pero valores por encima de 20% FFA oleica pueden generar problemas de corrosión a medio plazo.

CMBItaly, con presencia en el mercado de refino de aceites desde 1950 y cientos de instalaciones en todo el mundo, tiene la tecnología capaz de refinar los aceites residuales hasta calidad HVO. En el proceso de refino puede ayudarles a incorporar glicerina como materia prima avanzada.

Pero además es el único proceso capaz de eliminar el cloro de la materia prima.

El cloro tiene carga negativa, y los tratamientos con tierras activadas no son eficientes, ya que éstas funcionan bien sólo en reacciones que precisen de intercambio catiónico.

La presencia de cloro en la materia prima tiene tres efectos indeseables:

  • Corrosión: La reacción de hidrotratamiento puede generar ácido clorhirico, que ataca instalaciones.
  • Envenenamiento del catalizador: El cloro libre ataca el catalizador, envenenándolo y reduciendo la vida útil del mismo.
  • Formación de compuestos organoclorados: El proceso de hidrogenación en presencia de cloro puede generar compuestos organoclorados que pueden ir a parar al producto final, comprometiendo la especificación del mismo.

Se puede elminar el cloro de una forma sencilla mediante el proceso patentado por CMBItaly. No dude en contactar con nosotros para mayor información.

Raül Sanchis i Gonzàlez

Tata Genaro S.L.

raul@tatagenaro.com

Challenges in the refining of raw materials for HVO. The Chlorine problem.

Hydrotreated vegetable oil, or HVO, is a paraffinic fuel derived from organic lipids. It is a hydrogenation, with the use of catalysts, where the fatty acid chains are completely saturated, obtaining paraffinic fuel and bio-propane.

There are two production ways for it:

  • Co-process. Taking advantage of the desulfurization units of the oil refineries, at the same time that the diesel is being treated to eliminate the sulphur, a quantity of refined oil is added, which is transformed into paraffinic fuel HVO, and bio-propane. The HVO is mixed with the diesel and the propane is separated.
  • Direct process. Pure HVO and bio-propane are produced just like the previous case. Pure HVO can then go through the isomerization and cracking process where its conditions improve, this technology is the basis for the future development of sustainable aviation fuels (SAF)

Traditionally, both processes have worked with vegetable refined. With a RBD refined  is enough to obtain a quality product preserving installations and heterogeneous catalysts.

Biofuels based on vegetable oils are in extinction, with the incorporation of advanced raw materials being the reality and the growing trend today.

Advanced raw materials are generally waste materials. The residual materials have much higher refining needs than a first-use vegetable oil. The most abundant materials of this type today are recovered frying oils (UCO), cat1 & cat2 animal fats, tall oil, high acidity products, etc.

These raw materials cannot in any way be used directly in the manufacture of HVO. Since they would be a serious risk to the installation, in addition to poisoning the heterogeneous catalyst used, shortening the life of this expensive supply.

The elements and their repercussions are detailed below:

  • Phosphorus: Oil must enter in the process at a value less than 5 ppm. Higher values ​​affect the duration of the catalyst, and the quality of the final fuel. In more, the presence of phospholipids can generate emulsions that hinder the separation processes.
  • Metals: The total value of metals must be very low, less than 20 ppm. Metals cause scale in equipment, as well as being the main catalyst poison.
  • Oleic acidity: Oleic acidity is not a problem itself in the production process, but values ​​above 20% oleic FFA can cause corrosion problems in the medium term.

CMBItaly, with a presence in the oil refining market since 1950 and hundreds of facilities worldwide, has the technology capable of refining residual oils to HVO quality. In the refining process it can help them incorporate glycerine as an advanced raw material.

But it is also the only process capable of removing chlorine from the raw material.

Chlorine is negatively charged, and activated bleaching earths treatments are not efficient, since they work well only in reactions that require cation exchange.

The presence of chlorine in the raw material has three undesirable effects:

  • Corrosion: The hydrotreating reaction can generate hydrochloric acid, which attacks facilities.
  • Catalyst poisoning: Free chlorine attacks the catalyst, poisoning it and reducing its useful life.
  • Formation of organochlorine compounds: The hydrogenation process in the presence of chlorine can generate organochlorine compounds that can end up in the final product, compromising its specification.

Chlorine can be removed easily using the proprietary CMBItaly process. Do not hesitate to contact us for more information.

Raül Sanchis i Gonzàlez

Tata Genaro S.L.

raul@tatagenaro.com